Actual Problems of the Deep Learning Method in Lingual Personality Modeling.

Authors

  • I. Danyliuk Донецький національний університет імені Василя Стуса (м. Вінниця, Україна)

DOI:

https://doi.org/10.31558/1815-3070.2018.35.24

Keywords:

linguopersonology, linguistic personality, deep learning, artificial neural network

Abstract

Amount of training data, dealing with new data, fuzzy and syncretic data, ignoring hierarchical language and speech structure and linguistic knowledge are main DL problems.

Author Biography

I. Danyliuk, Донецький національний університет імені Василя Стуса (м. Вінниця, Україна)

кандидат філологічних наук, доцент, доцент кафедри загального та прикладного мовознавства і слов’янської філології

References

Bowman, S. R., Angeli, G., Potts, C., & Manning, C. D. "A large annotated corpus for learning natural language inference". arXiv:1508.05326. (2015). Web. 21 Aug 2015.

Danylyuk, I. "Avtomatyzovani metody opysu ta rozpiznavannya movnoyi osobystosti". (Automated linguistic personality description and recognition methods) Linhvistychni studiyi (Linguistic Studies) 32 (2016b): 93–99. Print.

Danylyuk, I. "Korpus tekstiv dlya vyvchennya hramatychnoyi sluzhbovosti." (Text corpora to study of a grammatical auxiliarity) Linhvistychni studiyi (Linguistic Studies) 26 (2013): 224–230. Print.

Danylyuk, I. "Korpus tekstiv dlya vyvchennya hramatychnoyi sluzhbovosti: klasyfikatsiya hramatychnykh klasiv i pidklasiv." (Text corpora for studying a grammatical auxiliarity: classification of grammatical classes and subclasses) Linhvistychni studiyi (Linguistic Studies) 27 (2013): 221–229. Print.

Danylyuk, I. "Perspektyvy zastosuvannya metodu mashynnoho navchannya dlya modelyuvannya movnoyi osobystosti" (Prospects of machine learning method for lingual personality modeling) Linhvistychni studiyi (Linguistic Studies) 33 (2017): 159–164. Print.

Danylyuk, I. "Teoretychni zasady i metody linhvopersonolohiyi" (Theoretical Principles And Methods of Lingvopersonology) Linhvistychni studiyi (Linguistic Studies) 31 (2016a): 63–66. Print.

Jia, R., & Liang, P.. Adversarial Examples for Evaluating Reading Comprehension Systems. arXiv:1707.07328. (2017). Web. 23 Jul. 2017.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. "Imagenet classification with deep convolutional neural networks" Advances in Neural Information Processing Systems 25. pp. 1097–1105. (URL http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf) Lake, B. M., & Baroni, M. "Generalization without systematicity: On the compositional skills of sequence-tosequence recurrent networks". arXiv:1711.00350 (2017). Web. 31 Oct 2017.

Lake, B. M., Salakhutdinov, R., & Tenenbaum, J. B. "Human-level concept learning through probabilistic program induction". Science, (2015). 350(6266), рр. 1332–1338.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., & Gershman, S. J. "Building Machines That Learn and Think Like People". Behav Brain Sci (2016) рр. 1–101.

Le, Q. V., Ranzato, M.-A., Monga, R., Devin, M., Chen, K., Corrado, G. et al. "Building high-level features using large scale unsupervised learning". Proceedings from International Conference on Machine Learning. arXiv:1112.6209 (2012). Web. 29 Dec 2011.

Luc, P., Neverova, N., Couprie, C., Verbeek, J., & LeCun, Y. "Predicting Deeper into the Future of Semantic Segmentation". International Conference on Computer Vision (ICCV 2017). arXiv:1703.07684 (2017). Web. 22 Mar 2017.

Mikolov, Tomas, et al. "Efficient estimation of word representations in vector space." arXiv preprint arXiv:1301.3781 (2013). Web. 10 Sep. 2016.

Marcus, G. "Deep Learning: A Critical Appraisal". arXiv:1801.00631 (2018). Web. 2 Jan 2018.

How to Cite

Danyliuk, I. (2018). Actual Problems of the Deep Learning Method in Lingual Personality Modeling. Linguistic Studies, 155-158. https://doi.org/10.31558/1815-3070.2018.35.24

Issue

Section

SECTION VII. Applied Linguistics: Trends and Aspects of Studies